特集

血中循環腫瘍細胞のシングルセル分離技術

公益社団法人 化学工学会 http://www.scej.org/

1. はじめに

血中循環腫瘍細胞 (CTC: Circulating tumor cell) はがん組織か ら血管内に侵入し、血流に乗り全身を循環するようになっ た腫瘍細胞である (図1)。がんの血行性転移に関与するこ とが知られており、採血のみで低侵襲的かつ定期的に採取 できる腫瘍細胞であることから,液体生検(リキッドバイオ プシー)の主要なターゲットとして知られている。液体生検 とは、血液や尿などの体液を利用してがんの性質を評価す る技術で, CTC や血中循環腫瘍 DNA (ctDNA: circulating tumor DNA), Exosomeなどが測定対象として挙げられている。 特にCTCは、転移・再発症例で生検が不可能な場合の組織 代替サンプルとしての利用や、定期的な採取・解析による 治療効果のモニタリングへの利用が可能であると考えられ ており,個別化医療の発展への寄与が期待されている^{1,2)}。 さらにCTCは、近年の研究により原発巣(最初に発生したが ん)とも転移巣(別の臓器に転移したがん)とも異なる性質を持 つことがわかってきており、転移メカニズムの理解や、新 たな治療標的の探索など、創薬分野での応用も検討されて

図1 血中循環腫瘍細胞(CTC)の模式図

Development of Single-Cell Isolation System for	
Circulating Tumor Cells	
Tomoko YOSHINO	
2005年 東京農工大学大	学院工学教育部生命
工学専攻博士課	程修了 博士(工学)
現 在 東京農工大学大	学院工学研究院生命
機能科学部門	教授
連絡先;〒185-8588 東	京都小金井市中町
2-24-16	
E-mail y-tomoko@cc.tua	at.ac.jp

2020年11月5日受理

特

集

吉野 知子・根岸 諒

いる。一方で、CTCは血液1mL中に含まれる約50億個の 血球のうち、多くても100個程度しか存在しない非常に希 少な細胞である。そのため、CTCの解析には高精度な細 胞分離技術が必要であった。本稿ではCTC解析向けの技 術開発の現状と、筆者らの研究グループで開発を進めてい るCTC分離技術であるMCA/GCM (Microcavity array/gel-based cell manipulation)法について紹介する。

2. CTC 解析の流れ

2.1 CTC濃縮

上述の通り、CTCは非常に希少な細胞であることから、 採取した血液をそのまま顕微鏡やFACS (Fluorescence activated cell sorting)等で解析することは効率面において不適である。 そのため、通常は血液中から赤血球や白血球などの正常血 球を除去し、CTCの存在比を上げる濃縮操作がおこなわれ る。CTCの濃縮技術は主に、CTCの表面に発現しているタ ンパク質を標的として抗体を利用して分離回収する「抗原抗 体反応方式」と、CTCと正常血球のサイズや変形能の差を利 用して分離回収する「物理的分離方式」に分けられる(図2)。

抗原抗体反応方式では、主に上皮細胞表面に存在する EpCAM (Epithelial cell adhesion molecule) と呼ばれるタンパク質 を認識する抗体が利用されている。抗体の固定化担体は磁 気微粒子やマイクロ流体デバイスなど様々であり、 CellSearch System (Silicon Biosystems) やCTC-chipなどが代表 的な技術として知られている^{3,4)}。特に、CellSearch System によるCTC数の計測は、転移性の乳がん、前立腺がん、 大腸がんにおける予後診断への利用が米国FDA (Food and drug administration) に認可されている。一方で、CTCは非常 に不均一な細胞集団であり、EMT (Epithelial mesenchymal transition:上皮間葉転換)により上皮性(上皮細胞に見られる特徴) を失い、EpCAMを発現しなくなったCTCが存在すること が知られている⁵⁾。EMTはCTCの転移巣への生着に関連

Ryo NEGISHI

2017年 東京農工大学大学院工学府生命工学専攻博士後期課程修 了 博士(工学)

- 1 在 東京農工大学大学院工学府 特任助教
- 連絡先;〒185-8588 東京都小金井市中町2-24-16

E-mail r-negishi@go.tuat.ac.jp

特

集

していると考えられ,EMTを起こしたCTCの解析が求め られているが,抗原抗体反応方式の手法ではこれらの検出 が困難であることが課題となっている。近年では白血球の 表面抗原であるCD45に対する抗体を用いて白血球を除去 する手法が開発されているが,除去効率が低く,更なる精 度向上が求められている。

物理的分離方式では, CTC が正常血球と比較してサイ ズが大きく、変形能が低い性質を持つことを利用してCTC を選択的に回収する。Isolation by size of epithelial tumor cell (ISET) と呼ばれ、主にはメンブレンフィルターなどを使用 して.フィルター上にCTCを回収する。抗原抗体反応方 式と比較して操作が簡便であり、タンパク質の発現に依存 しないため, EMTを起こした CTC を回収できることから, 肺がんなどがん種によっては抗原抗体反応方式の手法より も多くのCTCを回収できることが知られている⁶。一方 で.血液をフィルトレーションしてCTCを回収すること から、フィルターの孔径と同等あるいはそれ以下のサイズ のCTCが通り抜けてしまい回収できない点が課題として 挙げられている。このように、現状のCTCの濃縮技術は それぞれ一長一短があり、全てのCTCを余すことなく回 収することはできず、目的によって使い分けていくことが 必要となっている。

2.2 CTCのシングルセル分離

2004年にCellSearch Systemを用いたCTC計数による予 後診断法が承認されて以降,様々ながん種でのCTC計数 が試みられてきたが,現在においても診断利用が認められ ているのは先に挙げた3種のがん種のみであり,CTCの数 が持つ臨床的な意味は限定されていることが周知の事実と なっている。一方で,近年のシングルセル解析技術の発展 は目覚ましく,ゲノムやトランスクリプトームといった膨 大な情報を1細胞からでも取得することが可能となってき た。そのような背景から,近年ではCTCのシングルセル 解析が注目されている。CTCのシングルセル解析をおこ なうには,CTCを濃縮したサンプルからCTCのみをシン グルセルレベルで分離することが必要となる。一般的なシ

ングルセル解析では、十分量の細胞集団から複数のシング ルセルをランダムに分離,解析することで,母集団を構成 する細胞種を同定する。そのため、高速でのランダムサン プリングが可能なFACSやドロップレットデバイスなどの 技術が使用される。これらは、ハイスループットなシング ルセル分離が可能であるが、同時に大量の細胞をロスする ため, 分離効率は低い。一方で, CTC の場合は解析対象 が希少であるため、検出したCTCを余すことなく分離す ることが必要となる。そのため、現状では顕微鏡下でガラ スキャピラリーを用いて細胞を吸引するマイクロマニピュ レーション法が使用されることが多い⁷⁻⁹⁾。マイクロマニ ピュレーション法は観察した細胞を直接分離することがで きることから、CTC などの希少細胞の分離に適している が、労働集約的な操作が求められる。近年では顕微鏡シス テムと一体となった自動化装置や、誘電泳動に基づくシン グルセル分離システムである DEPArray などが販売されて いるが、いずれも数千万円程度の高額な装置であり、普及 には至っていない^{10,11)}。そのため、簡易かつ迅速かつ、細 胞のロスの危険性が少ない技術がCTC解析には求められ る。

MCA/GCM 法による CTC のシングルセ ル分離

3.1 MCA によるCTCの濃縮技術

筆者らの研究室では、シングルセルのイメージング解析 の支援ツールとして、Niなどの金属製基板に直径数 μ mの 微細な貫通孔を配したフィルターであるMicrocavity array (MCA)を開発してきた (図3)。MCAを介して細胞懸濁液を 吸引することで、シングルセルを孔の上に捕捉することが 可能であり、数千から数万細胞程度の微量な細胞集団を 90%以上の効率でアレイ化することができる。そこで、筆 者らはMCAの微細孔のサイズを検討することで、血液か らCTCを選択的に回収できると考えた。孔径と流速を検 討した結果、直径8~9 μ mの円形の孔を10⁴個配置した MCAを用いた場合に血液中に添加した肺がん細胞の90% を回収できることがわかった¹²⁾。さらに、静岡がんセンター との共同研究において、転移性非小細胞肺がん・小細胞肺 がん症例を対象にCTC検出試験をおこなった結果、全42

図3 MCAによるCTC 濃縮システム A:MCA表面の顕微鏡画像,B:MCAを内蔵したデバイス

(4)

症例中37症例からCTCを検出し、CTCの検出率、平均検 出数はCellSearch Systemと比較して高かった。このことか ら、MCAが肺がん症例におけるCTC回収及び検出におい て有用であることが明らかとなっている¹³⁾。

公益社団法人 化学工学会 http://www.scej.org/

一方で、MCAはフィルトレーションを原理とすること から、孔径と同程度のサイズのCTCをロスする可能性が あり、模擬サンプルでの試験においても平均サイズが小さ いがん細胞(13 µm以下)の場合に細胞回収率が6割程度まで 低下することが確認された。MCAは電鋳加工を用いて孔 を形成しているため、孔径だけではなく形状を制御するこ とが可能である。そこで、小径のCTCの回収に向けた取 り組みとして、孔の形状の検討をおこなった。フィルトレー ションの際にMCAに掛かる差圧が回収率の低下に繋がる と考え、一つの細胞で孔が占有されない長方形型の孔を持 つMCAを開発した。実際に血液3mLをフィルトレーショ ンした際の差圧を評価した結果、円形孔のMCAでは差圧 が最大で2.3 kPaまで上昇したのに対して、長方形孔では1.5 kPa以下となった。また、円形孔のMCAではフィルトレー ション後に差圧が増大したままであるのに対し、長方形孔 のMCAではフィルトレーション前の値まで低下した。こ のことから、孔を長方形型とすることで、円形孔と比較し て低い差圧条件で血液のフィルトレーションが可能である ことが示された。さらに、小径のがん細胞である小細胞肺 がん細胞の回収率は80%以上となり、円形孔MCAと比較 して回収率の向上を達成した¹⁴⁾。このように,筆者らは微 細貫通孔の形状が細胞の回収効率に影響を与えることを見 出しており、様々な細胞の回収に向けたフィルター開発を 進めている。また、化学メーカーとの共同研究にて MCA 方式に基づくCTC自動濃縮装置を開発し、医療機関での 性能評価試験を進めている^{15,16)}。

3.2 GCM 法による CTC のシングルセル分離

マイクロマニピュレーションによるシングルセルの分離 が困難を極める要因としては、細胞が非常に小さいため顕 微鏡観察下での操作が必須であることが第一に挙げられ る。そのため、実施者には肉体的にも精神的にも大きな負 担が掛かり、大量の検体を処理する上で適さない。そこで 筆者らは細胞を目に見える大きさのハイドロゲルに包埋す ることで、ピンセットなどを用いて細胞を容易に分離する ことが可能になると考えた。筆者らは本手法をGel-based cell manipulation (GCM) 法と定義し、シングルセル遺伝子解 析への応用が可能か評価を進めた¹⁷⁾。細胞の包埋において は局所的に光照射をおこなうことで任意の形状に硬化可能 な光硬化性ハイドロゲル Poly (ethylene glycol) diacrylate (PEGDA)を選択した。具体的な手順は以下の通りである(図 4)。(1) MCA上にがん細胞を回収したのち、上部から光重 合開始剤を添加したPEGDAを積層し、カバーガラスを用 いて封入する。(2) その後、蛍光顕微鏡を用いてがん細胞 の周囲にのみ波長365 nmの光照射をおこなうことで、シ

特

集

図4 GCM法によるMCA上からのシングルセル分離 A:MCA/GCM法のプロトコル, B:ハイドロゲル包埋単一細胞 と遺伝子変異解析結果

ングルセルを包埋したハイドロゲルを作製する。(3) 最後 に、カバーガラスを除去する。この時、ハイドロゲルがカ バーガラスとともにMCA上から脱離するため、ピンセッ トを用いてPCRチューブなどの反応層に分離することが 可能である。サイズの異なる複数のがん細胞を対象として シングルセル分離効率を評価した結果,いずれも95%以 上の効率での細胞分離が可能であり、本手法が高精度なシ ングルセル分離に利用可能であることが明らかとなった。 また、細胞の分離に要する時間は長くても30秒程度であ り、一細胞当たり数分から十分程度を要するマイクロマニ ピュレーションと比較して迅速な分離が可能であった。さ らに、細胞はMCAの孔に捕捉されているため、ハイドロ ゲルから一部露出した状態で包埋される。これにより、シ ングルセルに対して細胞溶解液やDNA合成酵素などがア クセスでき, 全ゲノム増幅 (Whole genome amplification : WGA) や全トランスクリプトーム増幅などの後段の核酸増幅反応 に供することができる。次に、本手法によるCTCのシン グルセル遺伝子変異解析の実証試験として, 健常者血液に

がん細胞を添加した試料を対象としてMCA/GCM法によ るシングルセル分離とWGA、サンガーシークエンスによ る遺伝子変異検出を試みた。がん細胞と白血球をそれぞれ シングルセル分離し、一部のがんにおいて変異が認められ る上皮成長因子受容体 (EGFR: epidermal growth factor receptor) 遺 伝子の遺伝子配列を解析した結果. がん細胞のみからがん 細胞特有の遺伝子変異が検出された。これらの結果から, MCA/GCM法は周囲の細胞を巻き込むことなく高精度なシン グルセル分離をおこなうことが可能であることが示された。

特

集

筆者らはGCM法の更なるスループット向上に向けて, プロジェクターなどに使用される光学素子である Digital micromirror device (DMD) と、独自に開発を進めていた広視 野蛍光イメージングシステムを統合した新たな光照射シス テムの開発を開始した¹⁸⁾。広視野蛍光イメージングシステ ムはCMOSセンサーにMCA全体の像を投影することで、 一度に全面を撮像することができる。DMDは数マイクロ メートル角の微小な鏡が高密度にアレイ化したものであ り、任意の形状の光を反射することができる。これらを統 合することにより、検出した複数のCTC に同時に光を照 射し、ハイドロゲルに包埋することが可能になる(図5)。 実際に、MCA上の任意の位置にアレイ化されたがん細胞 に対して光照射をおこなった結果, 10²のがん細胞に対し 一度に光照射、ハイドロゲル包埋が可能であり、90%以上 の効率で分離することが可能であった。このことから DMDを利用することでMCA/GCM法によるシングルセル 分離プロセスのハイスループット化が達成された。さらに現 在は、高倍率観察にも対応した新型機も開発しており¹⁹⁾、 CTCだけでなく接着細胞やオルガノイド、環境微生物の 分離に向けた技術開発を進めている。

上記のように筆者らはCTC解析に向けた技術開発を進 めているが、医療機関との共同研究においてがん患者の CTCのシングルセルオミクス解析も並行して進めている。 都立駒込病院との共同研究において、胃がん、すい臓がん 患者からのCTC分離及びトランスクリプトーム解析を進 め、遺伝子発現パターンからCTCの多くがEMTを起こし、 上皮性を失った細胞であることを明らかにしている。さら に、EMTの誘導因子として血小板によるシグナル伝達な どの複数の経路が関与していることを確認しており、薬剤 耐性獲得の機序の理解に向けた情報が蓄積されつつある。

4. おわりに

本稿ではCTCのシングルセル分離技術の開発状況と筆 者らが独自に開発を進めている MCA/GCM 法について概 説した。CTCの研究は2000年代の初頭から徐々に取り組 まれていたが、技術的な難しさから同様の液体生検のター ゲットである血中腫瘍 DNA (Circulating tumor DNA: ctDNA) な どと比較して解析が遅れている状況にある。近年のシング

図5 DMDを用いたマルチ光照射システム A:装置概要,B:MCAの全面撮像及び細胞への同時光照射によ るハイドロゲルの作製。スケールバー:500 μm (左列), 250 μm (右列)

ルセル遺伝子解析技術の発展により、CTC研究にも進展 の兆しが見えてきており、ctDNA解析だけでは得られない 情報を取得できることが明らかとなっている。一方で、シ ングルセル分離プロセスはまだまだ改善の余地が残されて おり、爆発的な普及には程遠い。クライオ電子顕微鏡の登 場が生体分子の立体構造解析におけるパラダイムシフトを 起こしたように、研究領域全体を一歩先に推し進めるため には技術革新が不可欠である。我々はCTC解析による医 療品質、がん患者のQOL向上の実現に向けて、今後も工 学の立場から研究開発を進めていきたいと考えている。

参考文献

- 1) Mivamoto et al. : Science, 349(6254), 1351-1356(2015)
- 2) Yu et al. : Science, **339**(6119), 580-584(2013)
- 3) Cristofanilli et al. : N. Engl. J. Med., 351 (8), 781-791 (2004)
- 4) Nagrath et al. : Nature, 450(7173), 1235-1239(2007)
- 5) Lampignano et al. : Int. J. Mol. Sci., 18(9), 1885-1901 (2017) 6) Hofman et al. : Int. J. Cancer, 129(7), 1651-1660(2011)
- 7) Gorges et al. : Clin. Chem., 62(11), 1504-1515(2016)
- 8)
- D'Avola et al. : Sci. Rep., 8(1), 11570(2018)
- 9) Sun et al. : Clin. Cancer Res., 24(3), 547-559(2018) 10) Szczerba et al. : Nature, 566 (7745), 553-557 (2019)
- 11) Peeters et al. : Br. J. Cancer, 108(6), 1358-1367(2013)
- 12) Hosokawa et al. : Anal. Chem., 82(15), 6629-6635(2010)
- 13) Hosokawa et al. : PLoS One, 8(6), e67466(2013)
- 14) Hosokawa et al. : Anal. Chem., 85(12), 5692-5698(2013)
- 15) Negishi et al. : Biosens. Bioelectron., 67 438-442 (2015)
- 16) Yagi et al. : PLoS One, **12**(6), e0179744(2017)
- 17) Yoshino et al. : Anal. Chem., 88(14), 7230-7237(2016)
- 18) Negishi et al. : Anal. Chem., 90(16), 9734-9741 (2018)
- 19) Negishi et al. : Eng. Life Sci., Early view (2020)

68