特集 蓄熱技術の最前線と社会実装への挑戦

公益社団法人 化学工学会 http://www.scej.org/ **********

我が国における一次エネルギーは約60%が未利用の排熱として排出されている*との報告もあり、こ れらを回収し有効利用することが急務である。蓄熱によりエネルギーを貯蔵・輸送して需給をマッチン グすればこれら問題点を解決する一助となると考えられることから蓄熱技術に関して多くの研究開発が なされているが、その本格的な普及には、さらなる技術的進歩(蓄熱密度向上、長期蓄熱技術(放熱ロス 削減), 蓄熱材料の加工性改善, 等)や経済合理性の確保等解決すべき課題も多い。

本特集では、最新の蓄熱材料開発動向を概観するとともに、電力供給や省エネ建材等、我々の生活に 身近な分野への適用状況について紹介する。

> * NEDO:未利用熱エネルギーの革新的活用技術研究開発 基本計画書 (編集担当:村井亮太);

固体-固体相転移を利用した蓄熱セラミックスの開発

大越 慎一・生井 飛鳥・所 裕子

蓄熱材料は大別すると三種類に分類することができる。物

質の比熱を利用する顕熱蓄熱材料としては、 コンクリート やレンガなどが挙げられる。一般に、蓄熱密度が低く、蓄

えた熱エネルギーが時間経過で徐々に外部に放出されてし

まうため熱エネルギーの保存はできないが、安価で大量生

産が容易な優れた蓄熱材料である。一方、物質の相転移に

伴う転移熱(潜熱)を利用する蓄熱材料を潜熱蓄熱材料と言

う。水、パラフィン、ポリエチレングリコールなどが身近

に用いられている。一般的に、潜熱蓄熱材料は安全性に優

れ高い蓄熱密度を有するが、時間経過とともに蓄熱したエ

ネルギーが外部に排出されてしまい、熱エネルギーの保存

ができないという性質を示す。また、化学反応(吸収・混合・

水和)時の吸熱・発熱を利用する化学蓄熱材料は.酸化マ

グネシウムや酸化カルシウムが挙げられる。蓄熱密度が高 く、蓄えたエネルギーを長期間保持できるが、体積収縮・

膨張や腐食性などの観点から、安全性保持や可逆特性向上

それぞれの蓄熱材料の利点を集約した蓄熱材料、すなわ

ち、安全性に優れ蓄熱密度が高く、かつ蓄熱エネルギーを

長期間保持でき、希望のタイミングでそのエネルギーを取

教授

2004年 東京大学大学院工学系研究科博士後

筑波大学大学院数理物質科学研究科

期課程修了 博士(工学)

連絡先;〒305-8573 つくば市天王台1-1-1

Hiroko TOKORO

のための更なる技術開発が進められている。

現在

1. はじめに

特

集

近年、エネルギーの有効利用という観点から、熱マネー ジメントが注目を浴びている。利用できずに廃棄される未 利用熱を有効に利用できれば、エネルギー消費量の削減に つながるからである。未利用熱を転用するためには、"サー マルギャップ"と呼ばれる問題を解決する必要がある。サー マルギャップとは、未利用熱が発生するタイミングと需要 が発生するタイミングの差(時間ギャップ), 未利用熱が発生 する場所と用いたい場所の差(空間ギャップ)、未利用熱の温 度とそれを用いる際の温度の差(温度ギャップ)である。これ らのギャップを如何に埋めるかが重要な課題となる。これ らを解決する手段として、蓄熱材料が注目を浴びている。

Development of Heat-Storage Ceramics Based on Solid-Solid Phase Transition Shin-ichi OHKOSHI

- 1995年 東北大学大学院理学系研究科博士後 期課程修了 博士(理学) 現 在 東京大学大学院理学系研究科化学専
- 攻 教授 連絡先; 〒113-0033 東京都文京区本郷7-3-1

E-mail ohkoshi@chem.s.u-tokyo.ac.jp

2011年 東京大学大学院理学系研究科博士後 期課程中途退学 博士(理学) 現在 攻 助教 連絡先;〒113-0033 東京都文京区本郷7-3-1 E-mail asuka@chem.s.u-tokyo.ac.jp

2019年7月5日受理

Asuka NAMAI 東京大学大学院理学系研究科化学専

† Murai, R. 令和元, 2年度化工誌編集委員(9号特集主查) JFEスチール(株)スチール研究所環境プロセス研究部

E-mail tokoro@ims.tsukuba.ac.jp

り出すことができるような蓄熱材料を開発できれば, 蓄熱 特性を利用したエネルギー有効利用技術の飛躍的な発展が 期待できる。このような観点から,筆者らは,特異な双安 定性を有する固体相転移物質に着目し, 蓄熱したエネル ギーを永続的に保存でき,低い圧力をかけるとそのエネル ギーを取り出すことができる酸化チタンを開発し, "蓄熱 セラミックス"という新概念を提案している。本稿では, この"蓄熱セラミックス"について,詳しく紹介する^{1,2)}。

2. ストライプ型 - ラムダ型五酸化三チタン の合成と結晶構造

酸化チタンの中では、二酸化チタン(TiO₂)が白色顔料な どとして用いられ、最も身近に存在している。TiO₂では、 Tiイオンの価数が4価でありd電子を持たないためにd-d 遷移が起こらず、可視部に吸収を持たない。二酸化チタン には様々な結晶形があり、ルチル型、アナターゼ型、ブルッ カイト型などが知られている。一方、3価のTiイオン(Ti³⁺、 d¹)を含む、三酸化二チタン(Ti₂O₃)、七酸化四チタン(Ti₄O₇)、 五酸化三チタン(Ti₃O₅)は、d電子を有するため黒色に近い 深い色をしている。

筆者らは、ルチル型二酸化チタンを還元雰囲気下で高温 焼成することにより、五酸化三チタンを合成した(図1a)。 得られた五酸化三チタンは、200×30 nm程度の短冊形の ナノロッドが集まって形成された、数マイクロメートルサ イズのさんご礁のような形状の粒子であった(図1b)。

大気圧下(*P*=0.1 MPa)で,粉末X線回折(XRD)パターンを 調べたところ,主相は単斜晶(空間群*C*2/m)のラムダ型五酸 化三チタン(λ-Ti₃O₅)と呼ばれる結晶相であった(図2a(i))。3 つの非等価なTiサイト[Ti(1), Ti(2), Ti(3)]と, 5つの非 等価なOサイト[O(1), O(2), O(3), O(4), O(5)]があ る(図2a(ii))。このラムダ型五酸化三チタンは, 筆者らが 2010年に発見した新規相で³⁾, 室温で金属的な伝導性を示 す。このXRDパターンの最大エントロピー法により求め

図1 (a) ルチル TiO₂ を原料とする λ -Ti₃O₅の合成法。粒径約500 nmのルチル TiO₂ (左図) を還元焼成することで、約4 μ m× 1 μ mの λ -Ti₃O₅が得られる(右図)。(b)本合成法で得られる λ -Ti₃O₅のTEM像。高解像度 TEM像 (中央挿入図) およびそ のフーリエ変換画像 (中央下挿入図) から、 λ -Ti₃O₅は約200 nm×300 nmの短冊形のナノロッドの集合体となっており、 ナノロッドの長軸が結晶のb軸と一致している [Adapted with permission from *Nat. Commun.*, 6, 7037 (2015) ©2016 Springer Nature]

図2 (a) 大気圧下 (P=0.1 MPa) のXRD パターン (i), XRD パターンのリートベルト解析により求められたストライプ型-λ -Ti₃O₅の結晶構造 (ii),最大エントロピー法により視覚化した*bc* 面の電荷密度分布図 (iii)。 (b) 圧力印加 (P=500 MPa) し,圧力解放後に測定した XRD パターン (i),圧力印加により生成した β-Ti₃O₅の結晶構造 (ii) とその*bc* 面の電荷密度分 布図 (iii) [Adapted with permission from *Nat. Commun.*, 6, 7037 (2015) ©2016 Springer Nature]

特

集

た電荷密度分布図(図2a(iii))に示すように, Ti³⁺のd電子が 非局在化していることで金属的な伝導性を有すると考えら れる。我々は, この物質をストライプ型-ラムダ型五酸化 三チタン(ストライプ型-λ-Ti₃O₅)と名付けた。

3. 圧力誘起相転移

特

集

ストライプ型- λ -Ti₃O₅の結晶構造の圧力 (*P*) 依存性を, XRD 測定を用いて調べた。圧力を印加していくと、 λ -Ti₃O₅ の回折ピーク強度が減少し、代わりにベータ型五酸化三チ タン (β -Ti₃O₅)に帰属される回折ピーク強度が増加した (図2b (i)、(ii))。 β -Ti₃O₅は、d電子が非局在化しており、半導体 的な伝導性を示す結晶相である。

図3に、 λ -Ti₃O₅と β -Ti₃O₅の相分率の圧力依存性を示す。 λ -Ti₃O₅の相分率が50%となる圧力($P_{1/2}$)は約60 MPaであっ た。圧力を開放した後、生成した β -Ti₃O₅に約197℃の加 熱処理をおこなうことにより、 β -Ti₃O₅は λ -Ti₃O₅に回復し た。この λ -Ti₃O₅は極低温から+260℃の幅広い温度領域 で安定である。この熱処理により回復した λ -Ti₃O₅に再び 圧力を印加すると、 λ -Ti₃O₅から β -Ti₃O₅への転移が観測さ れ、可逆性が確認された。

ストライプ型- λ -Ti₃O₅で観測された60 MPaという転移 圧力は、金属酸化物材料や金属化合物における圧力誘起相 転移の典型的な転移圧力に比べて極めて小さい。例えば、 ルチル型TiO₂からブルッカイト型TiO₂への圧力誘起相転 移は、770℃において20,000 MPa(=20 GPa)で起こる。

ここで、 λ -Ti₃O₅と β -Ti₃O₅の結晶構造を比較すると、Ti (3)の配位構造に大きな違いがある(図2)。 λ -Ti₃O₅ではTi (3)はO(5)と結合しているが、 β -Ti₃O₅ではO(4)と結合し ている。すなわち、 λ -Ti₃O₅から β -Ti₃O₅への圧力誘起相転 移は、Ti(3)-O(5)の結合が切れてTi(3)-O(4)が結合したと 考えられる。第一原理フォノンモード理論計算をおこなう と、この動きに対応する λ -Ti₃O₅の格子振動のモードが 248.6、318.5、445.8 cm⁻¹に存在するという結果が得られ た。例えば、445.8 cm⁻¹の格子振動モードは、Ti(3)はO(4) に向かいO(5)から離れるように振動する。一方、 β -Ti₃O₅

弱い圧力 (60 MPa) で, λ-Ti₃O₅ から β-Ti₃O₅ へ相転移

図3 λ-Ti₃O₅(▲) と β-Ti₃O₅(▼)の相分率の圧力依存性 [Adapted with permission from *Nat. Commun.*, 6, 7037 (2015) ©2016 Springer Nature]

から λ -Ti₃O₅への熱誘起相転移は, Ti(3)-O(4)の結合が切 れTi(3)-O(5)が結合することにより生じるが, β -Ti₃O₅では この動きに対応する格子振動モードが, 226.7と339.3 cm⁻¹ に存在するという結果が得られており, Ti(3)-O(5)結合と Ti(3)-O(4)結合の入れ替わりによる構造相転移が示唆され ている。

4. 蓄熱特性

ストライプ型- λ -Ti₃O₅における λ -Ti₃O₅と β -Ti₃O₅の間の 相転移による潜熱の評価を以下のようにしておこなった。 圧力により生成した β -Ti₄O₅が熱処理により λ -Ti₄O₅へ転移 するときの吸熱過程を比熱測定により調べた。極低温から 室温(+27℃)までの温度領域の比熱容量は物理特性測定装 置(PPMS)を,室温以上の温度領域では示差走査熱量計(DSC) を用いて測定をおこなった。PPMSとDSCの測定結果を組 み合わせて温度で積分することにより得られた、λ-Ti₃O₅ と β -Ti₃O₅のエンタルピー(H)の温度依存性を**図4**に示す。 加熱によって、圧力で生成したベータ相がラムダ相に回復 する過程で、吸熱が起こっている (図4右下挿入図)。その際 の吸熱量は,230 ± 20 kJ L⁻¹(12 ± 1 kJ mol⁻¹)であった。一方, 回復したλ-Ti₃O₅は温度が低下しても発熱しておらず,一 旦蓄えた熱エネルギーは、物質中に保持されることを示唆 していた。次に、 λ -Ti₃O₅から β -Ti₃O₅への圧力誘起相転移 による放熱エネルギー量を調べるため, 高圧マイクロDSC装 置を用いた測定をおこなった。室温において吸熱・発熱量を モニターすると、圧力印加直後に発熱が観測された(図4左上 挿入図)。その熱エネルギーは、240 ± 40 kJ L⁻¹であり、蓄熱 量と同等の熱量が放出される。これらの実験から、λ-Ti₃O₅ の方がβ-Ti_xO₅よりも大きなエンタルピーを持ち、圧力印加 によりラムダ相がベータ相に相転移する過程で熱エネルギー の放出が起こること、加熱によりβ-Ti₃O₅がλ-Ti₃O₅に相転 移する過程でエネルギーの吸収が起こることが分かった。ま た, 観測された熱量は代表的な潜熱蓄熱材料である水-氷の 320 kJ L⁻¹の約70%, エチレングリコールの165 kJ L⁻¹の 約140%,パラフィンの140 kJ L⁻¹の160%に相当する。固 体-液体相転移の潜熱は固体相転移の潜熱よりも一般に大 きくなるため、これは非常に大きな値であると言える。

なお、 λ -Ti₃O₅および β -Ti₃O₅のペレット成型物の熱伝導 率は、それぞれ0.20 ± 0.02 Wm⁻¹ K⁻¹と0.41 ± 0.02 Wm⁻¹ K⁻¹であり、これらの値は、顕熱蓄熱材料のレンガ(e.g. 0.16 Wm⁻¹ K⁻¹) やコンクリート (e.g. 0.57 Wm⁻¹ K⁻¹) の熱伝導率と 同等である。

5. 圧力誘起相転移のメカニズム

ストライプ型-λ-Ti₃O₅における圧力誘起相転移のメカニ ズムは次の様に説明される。図5に、平均場モデルによる 理論計算で得られたギブス自由エネルギー(G)の相分率

図4 λ -Ti₃O₅および β -Ti₃O₅の熱力学的特性。 λ -Ti₃O₅(青)および β -Ti₃O₅(赤)のエンタルピー(H)の温度依存性。右 下挿入図は圧力印加により生成した β -Ti₃O₅を加熱して λ -Ti₃O₅に転移させる昇温プロセスのDSC測定。左上 挿入図は、 λ -Ti₃O₅から β -Ti₃O₅への圧力誘起相転移プロセスにおける高圧マイクロDSC測定結果 [Adapted with permission from *Nat. Commun.*, 6, 7037 (2015) ©2016 Springer Nature]

図5 圧力誘起相転移メカニズムの熱力学的考察。平均場モデルを用いて20℃刻みで計算した、大気圧(0.1 MPa)および圧力印加下(60 MPa)におけるギブス自由エネルギー(G)のλ-Ti₃O₅の相分率(x)依存性。図中の球(青)および(赤)は、それぞれλ-Ti₃O₅およびβ-Ti₃O₅のエネルギー安定点(極小値)を示している。60 MPaの外部圧力を加えることによりエネルギー障壁が消失するため、λ-Ti₃O₅はβ-Ti₃O₅に圧力誘起相転移する(挿入図)[Adapted with permission from *Nat. Commun.*, 6, 7037(2015)©2016 Springer Nature]

(x) 依存性を示した。この平均場モデルでは、ギブス自由 エネルギーは、 λ -Ti₃O₅と β -Ti₃O₅の間の転移エンタルピー (Δ *H*)、転移エントロピー(Δ *S*)、および相互作用パラメーター (γ)を含んだ式で表され、 Δ H値と Δ S値は比熱測定より見 積られる。大気圧下(P=0.1 MPa)の室温では、 β -Ti₃O₅(x=0) の方がエネルギー的には低いが、 λ -Ti₃O₅と β -Ti₃O₅の間に エネルギー障壁が存在するために高温焼成にて生成した λ -Ti₃O₅がトラップされ、準安定相として存在することが 示唆された。一方、圧力を加えるとギブス自由エネルギー の相分率依存性は変化し、60 MPaでは、エネルギー障壁 が室温で消失する。この機構のために60 MPa以上の圧力 を加えた場合、 λ -Ti₃O₅に転移すると考えられる。

6. おわりに

ストライプ型-ラムダ型五酸化三チタンは、相転移の蓄熱 エネルギーを長期的に保存でき、必要な時に圧力を印加す ることにより、蓄えた熱エネルギーを放出できる蓄熱材料 である。筆者らは、圧力だけでなく、光照射や電流印加によっ ても β -Ti₃O₅から λ -Ti₃O₅へ相転移させられることを見出し ており、多様な外部刺激により熱を取り出すことができ る。また、 λ -Ti₃O₅はチタンと酸素というありふれた元素 からなるため、安全で環境にやさしい材料であり、溶鉱炉 をはじめとする数百℃程度の工業排熱の効果的な利用にも 役立つと期待される。

謝辞

共同研究者の吉清まりえ氏(東大特任助教),中川幸祐氏(東 大特任助教) に深く感謝申し上げます。本研究は,科学研究 費特別推進研究15H05697,科学研究費新学術領域研究 JP16H06521,東京大学「超微細リソグラフィー・ナノ計測 拠点」(文部科学省)の支援を受け,その一環としておこなわ れました。

参考文献

- 1) Tokoro, H. et al. : Nat. Commun., 6, 7037 (2015)
- 大越慎一,所裕子:フォノンエンジニアリング,エヌティーエス出版, pp.225-234(2017)
- 3) Ohkoshi, S. et al. : Nat. Chem., 2, 539-545 (2010)

特

集