特集 非平衡・非線形現象の工学的応用

自然界の物理現象には、自発的に秩序が形成される現象が数多く存在する。これは、それらの系では 物質やエネルギーの流出入が絶えずおこなわれ、平衡・線形から離れた非平衡開放系になっているから に他ならない。工業プロセスの多くは定常状態で操作するため、平衡の制約下で設計・操作されるが、 より高度な機能を多様な自然現象から学び、取り入れるには、非平衡・非線形へと拡張させなくてはな らない。

公益社団法人 化学工学会 http://www.scej.org/

この特集では、非平衡開放系において見出される自律的なリズム運動の発生、自己組織的に形成され るパターンや形態など、特徴的な時空間構造を理論的に解釈し、化学プロセス、材料作製プロセスに応 用を展望する研究を紹介する。本特集が、非平衡・非線形現象の意義への理解を深め、化学工学の視点 から取り組むべき技術展開を考える一助となることを願う。 (編集担当:田中俊輔) †

ソフトマターのモデリング:非平衡系・生物系への挑戦

山本 量一・大山 倫弘・John J. MOLINA・Simon K. SCHNYDER

ソフトマター科学者から見た非平衡系・ 生物系

化学工学はもともと実学的な学問として,既存の学術的 知識を分野横断的に再体系化したものである。その背景に は「各々の化学装置の複雑な現象から本質を抽出して問題 を一般化し,それらを設計・運転・制御のための普遍的な 指針を与える」という一貫した姿勢が存在する。その過程 において「捨てるべきは捨て,重要な変数のみを残して定 式化(モデリング)し,定量性より汎用性・普遍性を重視す る」という,純粋科学にはないユニークな特徴が育まれた。

Applications of Soft-Matter Modeling toward Non-Equilibrium and Biological Systems Ryoichi YAMAMOTO 1992年 神戸大学大学院工学研究科化学工学 専攻修士課程修了 現在京都大学工学研究科教授 連絡先;京都市西京区京都大学桂 E-mail ryoichi@cheme.kyoto-u.ac.jp

2017年3月9日受理

Norihiro OYAMA 2017年 京都大学大学院工学研究科化学工学 専攻博士課程修了 現 在 京都大学工学研究科 D3 連絡先:京都市西京区京都大学桂 E-mail oyama@cheme.kyoto-u.ac.jp 「数学」や「統計学」,力学・流体力学・連続体力学・統計熱 力学等の「古典物理学」の知識を最大限に活用するという点 でも,化学を標榜する分野の中では独特である。

上記において「化学装置」を「物質」と置き換えると、化学 工学の特徴はソフトマター科学の特徴とほとんど一致する が、これは決して偶然ではないと思っている。日本と欧州 ではソフトマター科学が統計物理学者の研究対象として発 展したのとは対照的に、化学工学発祥の地であるアメリカ では、化学工学者の研究対象として発展した歴史がある。 複雑流体のレオロジーで有名なBird、Lodge、Larson、コ ロイド科学で有名なRusselやBrady、高分子系のモデリン グで現在主導的な立場にいる de PabloやFredrickson など、

John J. MOLINA 2011年 パリ第6大学物理化学専攻博士課程 修了 現在京都大学工学研究科 助教 連絡先;京都市西京区京都大学桂 E-mail john@cheme.kyoto-u.ac.jp

Simon K. SCHNYDER 2014年 デュッセルドルフ大学物理学専攻博 士課程修了 現 在 京都大学福井謙一記念研究所 フェ ロー 連絡先;京都市左京区高野西開町 34-4 E-mail simon@cheme.kyoto-u.ac.jp

† Tanaka, S. 平成 27, 関西大学

平成27,28年度化工誌編集委員(6号主査) 関西大学環境都市工学部エネルギー・環境工学科

特

集

化学工学科に所属する有力なソフトマター科学者は数多い。

ソフトマター科学は比較的新しい研究分野であるが,重 要なものだけを残す手法の背景には、しっかりとした理論 的裏付けがある。古くは久保の線形応答理論,森の射影演 算子法,川崎のモード結合理論,その後の土井のレプテー ション理論,小貫の応力拡散結合理論,太田・川崎の高分 子ブロック共重合体の理論モデルなど,日本人の貢献も非常 に大きい。液晶や高分子など,複雑な系への理論の適用に はフランスのde Gennesが成功し,1991年にノーベル物理学 賞を受賞した。ソフトマターという言葉はその受賞記念講演 で用いられ、その後研究分野名として定着したものである。

高分子・液晶・コロイド・ゲル・脂質膜など,ソフトマ ターは我々の生活に密接に関係した物質である。物質内部 にメソ~ミクロスケールの階層構造を持ち,弱い外力に対 しても容易に非平衡状態に到達し,複雑な非線形の力学応 答を示すのもソフトマターの特徴である。個々の分子より もそれらの集団の分布や運動,個々の物質間の差異よりも 現象そのものの普遍性の起源に興味の中心があり,量子化 学や固体物理などの精密さを重視する各分野とは一線を画 するユニークな粗視化モデルやマルチスケールモデルが大 いに発展した。

実験技術の進歩に伴い,アクティブマター (エネルギーを 消費しながら自発的に運動する機能を備えたソフトマター)や、微 生物・細胞などのバイオマターに対しても、近年物理学的 な興味から定量的な実験がおこなわれるようになって来 た。外力や状態の変化によって非平衡状態がもたらされる 受動的なソフトマターとは異なり、アクティブマターやバ イオマターでは、構成要素の自発的運動によって系は初め から強い非平衡状態にある。これらの系では特異な集団運 動の出現が次々と報告されているが、その機構や役割の理 解はほとんど手付かずであり、それらの解明にソフトマ ター科学で培われた独自のモデリング手法が有効であると 期待されている。そのような取り組みの一環として、我々 の研究室でも「マイクロスイマー(粘性流体中を泳動するモデル 微生物)」や「基板上で遊走・増幅する細胞」の示す特異な集 団運動について、研究対象を広げて来た。本稿では、これ ら2つの系に対する計算機シミュレーションを用いた試験 的な研究について、その概要を紹介する。

2. マイクロスイマーの集団運動

2.1 マイクロスイマーとは

微生物を代表とする微小スケールの泳動体(マイクロスイ マー)の分散系は,非平衡統計力学の代表的な適用対象と して理学的な興味を持たれているほか,ドラッグデリバ リーシステムや可変粘性液体材料の実現などへの工学的な 応用も期待されている。特に,マイクロスイマー分散系で は明示的な運動の協調化メカニズムがなくとも,非自明な 集団運動が観察され得ることが知られている。そうした集 団運動は,スイマー同士に働く複雑な流体力学的相互作用 の帰結であり,単粒子の運動の観察からは簡単には予想が できないものである。

我々は、マイクロスイマーの運動と周囲の流体の運動を 連成問題として同時に時間発展させることが可能な数値計 算手法を独自に開発した。マイクロスイマー分散系の動特 性に関する数値計算的アプローチとしては、スクイマーモ デルと呼ばれる球形粒子モデル^{1,2)}が広く用いられてお り、本研究でもこれを採用した^{3,4)}。マイクロスイマーは、 周囲に作り出す流れ場の特性からpusher、puller、neutralの 三つの泳動形態に大別されるが、スクイマーモデルでは、 後述するモデルパラメータαの調整によりこれらのスイ マーを実現することができる。

紙面の都合により,本稿では「平行平板間での進行波状 特異的集団運動⁵⁰」についてのみ触れるが,その他に「バル クにおける方向秩序形成⁶⁰」と「パイプ内方向秩序形成⁷⁰」に ついても研究をおこなっている。これらの一連の研究成果 は,個々に出版した論文の他,著者の1人である大山の博 士学位論文^{8,9)}としてまとめられている。

2.2 シミュレーション手法

本研究では、マイクロスイマーのモデルとして球形のス クワマーを用いる。流体・粒子の基礎方程式は、それぞれ ナビエ・ストークス方程式と連続の式、ニュートン・オイ ラー方程式を用い、スクワマー表面での流体の境界条件は SP (Smoothed Profile)法を用いて表現した³⁾。SP法では界面関 数 ϕ を用いて粒子/流体の界面を表現する。すなわち、 ϕ = 0が流体、 ϕ =1が粒子を表し、その界面では有限の厚 み ξ の範囲で ϕ が0から1へとなめらかに変化する。粒子 にかかる力とトルクは、粒子と流体の運動量交換によって 生じる流体粒子間相互作用(体積力)を用いて計算できる³⁾。 時々刻々と移動する粒子表面での境界条件は、界面変数 ϕ を用いて体積力で表現することができるため、非常に計算 効率がよい。

粒子が自走する機構は、Lighthill¹⁾ やBlake²⁾ が提案した スクワマーモデルを用いた(図1)。このモデルは、粒子表 面で式(1)のように接線方向にスライドする境界条件を設 定することで、粒子に自走性を与える。ここで、 e_{θ} は接 線方向の単位ベクトル、 B_1 は孤立粒子の速度を、 α はマイ クロスイマーの泳動様式を決定するパラメータである。 α >0の場合をpuller型、 α <0の場合をpusher型と呼ぶ。

$$\mathbf{u}(\mathbf{r}) = B_1 \left(\sin\theta + \frac{\alpha}{2} \sin 2\theta \right) \mathbf{e}_{\theta}$$
(1)

特

集

図1 Squirmer モデルのパラメータ αと実際の微生物の対応。(a)
 のバクテリアは α<0の pusher 型 (c) に, (b) のクラミドモナスは α>0の puller 型 (d) に対応(文献2)の図1より転載)

2.3 シミュレーション結果

特

集

平行平板間に閉じ込めたマイクロスイマーのシミュレー ションをおこなったところ,puller型(α =0.5)の場合に液体 中に自走粒子の数密度に関する波の進行が観察された(**図** 2)。さらに,この進行波の定量的な理解を試みて,平板の ないバルク系について,系内のスイマー密度(波数k)の時間 変化を周波数 ω に分解表示する動的構造因子 S(k, ω)を計算 すると,通常のコロイド分散系には見られない音波的な密 度の揺らぎモードが観察されるなど,スイマーに特徴的な 振る舞いが観察できた。興味深いことに,この進行波は pusher型(α =-0.5)でも存在するものの,puller型とは異な りその振幅は非常に小さく,動画等で直接観察することは できない。pusher型とpuller型について,このように集団 運動が非対称的な挙動を示す機構については理論的にまだ 良く理解できておらず,理解を進めているところである。

3. 基板上で遊走・増殖する細胞の集団運動

3.1 遊走・増殖する細胞とは

アメーバや粘菌の一種,あるいはケラトサイトと呼ばれ る魚類の表皮細胞を基板上に置くと,自発的に一見ランダ ムにも見える遊走運動を開始する。この運動は,溶媒の熱 ゆらぎにより発現する分散粒子のブラウン運動にも似てい るが,細胞はエネルギーを消費しながら基盤に駆動力を作 用させて自走していることと,細胞は微粒子よりずっと大 きく熱ゆらぎの影響は無視できるという点において,熱ゆ らぎよって起こる受動的なブラウン運動とは全く異なる。

 図2 平行平板間でのPuller(α=0.5)分散系のダイナミクス。(a, b)スナップショット,(c)壁面間のある位置で平板に平行な 面内で平均した粒子密度分布を時間の関数としてプロット。 横軸は時間,縦軸は底面からの高さを示す。密度波の進行 が斜めの縞構造として確認できる。(c)左右点線の時刻にお けるスナップショットが,それぞれ(a),(b)に対応(文献8) の図8より転載)

さらに遊走細胞が多数集まると,非自明な集団運動を示す ことが報告されている。

これらの生物系が示す非自明な挙動は、一般的には複雑 な生物学的・化学的なプロセスの結果として発現するもの である。それに異を唱えるつもりは毛頭ないが、ソフトマ ター科学で培われた、異なる系の細かい異差よりも現象そ のものの普遍性に興味を持つという独自の考え方を適用し て、このような生物系の複雑な挙動をより単純な原理の組 み合わせとして理解できれば、それはそれで面白い。その ような視点から、生物系に対して力学的・物理学的視点か らの試験的なアプローチが開始されつつある¹⁰⁻¹³⁾。我々自 身も、このような自発的に運動する細胞集団に対して有効 な力学的モデルを構築し、自己複製・自己組織化する細胞 集団が示す特異なダイナミクスのメカニズムの解明に取り 組んでいる。

3.2 シミュレーション手法

現実の細胞は、内部のアクチン・ミオシン網による伸張・ 収縮を周期的に繰り返して移動する。この機構で発生する 力は内的なものであり、個々の細胞についてその総和はゼ ロでなければいけない(フォースフリー条件)。我々はこの様 な内的な力を周期的に切替えて推進する力学モデルを考 え、その運動を1周期で平均化することで、図3(a)に示す 遊走細胞の最小モデルを導出した¹⁴⁾。このモデルでは1つ

図3 (a)本研究で用いた2円盤による遊走細胞の最小モデル。(b) 2円盤最小モデルに作用する2つの力を図示。 ε は相互作用 のエネルギーの単位である。(文献14)の図1より転載)

の細胞を、基板に対して摩擦係数 ζ を有する前後の2円盤 (それぞれ直径が σ f, σ b)で表し、前部にのみ駆動力が作用し、 後部と前部は最大長 R_{max} の非線形バネ(F_{fene})で結合されて いる。一見外力によって駆動されているように見えるが、 平均する前の段階で明らかにフォースフリー条件を満たし ている。また、図3(b)に示すように、駆動力(F_{mig})の強さ を前後の円盤間距離 r_{bf} に比例するように定義することで、 細胞同士の接触阻害(CIL)をモデルに直感的に実装するこ ともできている。

3.3 シミュレーション結果

細胞形状の変化に伴う集団運動の挙動の変化を図4に示 す。今回のモデルは非常に単純であり、考慮されている機 構が細胞の「自走性」と「接触阻害」のみであるにもかかわら ず、現実の細胞系で観察される幾つかの特徴的な挙動によ く似た特異な集団運動を再現することに成功した¹⁴⁾。詳細 な議論や定量的な比較はまだ開始したところであるが、自 走する多数の細胞という非常に複雑な系の運動を、このよ うに簡単な力学モデルである程度再現できるということ自 体が大きな驚きである。

4. 今後の課題

生物科学の分野でも計算科学的手法の導入は始まってい るが、その多くは分子生物学的な立場に立ったミクロな分 子モデルによるものである。医療や生命現象に関連した生 体材料や生体組織を対象とする場合、それらが複雑なマル チスケール(ミクロnm~マクロcm)の階層構造を持つのみな らず、細胞死や細胞分裂などの非常に遅い時間スケールで 自発的に起こる現象をも考慮する必要があるため、ミクロ モデルをそのまま適用するのは不可能である。連続体モデ ルに基づくマクロなシミュレーションもおこなわれている が、異なるスケールをつなぐ問題は未解決である。ソフト マターに対して成功を納めた手法を発展させ、細胞〜組織 のスケールで有効なモデリング手法を構築することが我々 の目標である。

例えば、マイクロスイマーのドラッグデリバリーシステ

特

集

ムや可変粘性液体材料の等への応用を考えるならば,スイ マー単体やその集団の輸送現象を理解するのは重要であ り,生体内の特殊な環境における壁面や境界との相互作用 の影響を正しく理解する必要がある。本研究では平行平板 内やパイプ内におけるマイクロスイマーの輸送挙動に注目 したが,より現実の生体内環境に近い条件下での詳細な検 討が求められる。

他方,細胞の集合体である組織の内部では,細胞分裂や 細胞死などのイベントが定常的に発生しており,生体はそ れを積極的に利用することで,通常の物質にはない成長や 傷の修復などの生体特有の重要な動的プロセスを実現して いる。細胞分裂による増殖機構をモデルに実装する他,細 胞間の相互作用として遊走の接触阻害や細胞間の接着性を 考慮することで,成長・増殖する生体組織のモデリングを 模索する。この問題ではMDCK細胞などに対する*in vitro* の実験が進んでおり,それらとの定量的な比較によってモ デルの妥当性を検証したい。

参考文献

- 1) Lighthill, M. J. : Commu. Pure Appl. Math., 5(2), 109-118(1952)
- 2) Blake, J. R. : J. Fluid Mech., 46(1), 199-208(1971)
- 3) Molina, J. J., Y. Nakayama and R. Yamamoto : *Soft Matter*, 9, 4923-4936 (2013)
 4) Software is available freely from KAPSEL website
- http://www-tph.cheme.kyoto-u.ac.jp/kapsel
- 5) Oyama, N., J. J. Molina and R. Yamamoto : Phys. Rev. E, 93, 043114 (2016)
- 6) Oyama, N., J. J. Molina and R. Yamamoto : arXiv:1606.03839 Oyama, N., J. J. Molina and R. Yamamoto : arXiv:1612.00135
- 7) Oyama, N., J. J. Molina and R. Yamamoto : arXiv:1612.00135
- Oyama, N., J. J. Molina and R. Yamamoto: *J. Phys. Soc. Jpn.*, submitted.
 大山倫弘:学位論文,京都大学大学院工学研究科(2017)
- 9) 入口偏远,子远调义,京和八子八子阮二子切九杆(2017) 10) Ohta, T. and T. Ohkuma: *Phys. Rev. Lett.*, **102**, 154101 (2009)
- Coburn, L., L. Cerone, C. Torney, I. D. Couzin and Z. Neufeld : *Phys. Biol.*, 10, 046002 (2013)
- Vedel, S., S. Tay, D. M. Johnston, H. Bruus and S. R. Quake : *PNAS*, **110**, 129-134 (2013)
- Basan, M., J. Elgeti, E. Hannezo, W. J. Rappel and H. Levine : *PNAS*, 110, 2452-2459 (2013)
- 14) Schnyder, S. K., Y. Tanaka, J. J. Molina and R. Yamamoto : arXiv:1606.07618